量一定时间内金属筒获得的电量Q。
若进入筒内的微粒数为N,每个微粒所带的电量为e,那么Q便是N和e的乘积。
接着法拉第又翻了一页书,写下了另一个公式:
W=
N·1/2mv2。
这个公式的意义同样非常简单:
经过同样时间后读出温升,若进入筒内微粒的总动能W因碰撞全部转变成热能,那么上升的温度便可以对标计算出总动能W。
而微粒既然是粒子,那么它的动能也便一定符合动能公式——防杠提前说一下,动能公式在1829年就提出来了。
其中的m、v分别为微粒的质量和速度,乘以微粒数就是总动能。
接着只要求出最后磁极偏转的微粒运动轨道的曲率半径R,以及磁场强度H。
那么便可得:
Hev=mv2/R。
将上面三个公式互相代入,最终可以得到一个结果:
e/m=(2w)/(H2R2Q)(感谢起点,现在后台总算优化一些了.....)
而e/m,便是........
荷质比!
所谓荷质比,指的便是带电体的电荷量和质量的比值,