的证明题,堪比之前的孪生素数猜想。
虽然有挑战。
但他最喜欢的就是挑战。
说不得。
他今天还非证明其不可。
“解:首先化解周氏猜测为:当2^(2^(n?1))<p<2^(2^n)时,Mp有2^n-1个是素数,πMp^(2^n)-πMp^(2^2(n?1))=2^n-1……(a)。”
“即当p<2^(2^n)时,πMp^(2^(2^n))梅森素数的个数为2^(n+1)-n-1。”
“……”
“先假设……”
“再求证……”
“可用反向数学归纳法……”
【一个包含正整数的集合如果具有如下性质,即若其包含整数k+1,则其也包含整数k,且1,2,3,4,5均在其中,那么这个集合一定是所以有正整数的集合。】
“反向数学归纳法成立的要件……”
“(1)基础步骤:(递推起始条件)当n=1,2,’3,4,5时都成立(具有同一性质)。”
“(2)归纳步骤:(假设推导条件)当假设n=k+1成立时能推出n=k成立。”
“(3)那么n